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Abstract: The goal of the present study is to clarify the formation and behavior of sound pressure
fields from a statistical point of view when the individual transducers constituting an array source have
random performances or, alternatively, conversion efficiencies from electric to acoustic power that
vary with the individual transducer. Linear and nonlinear fields are considered herein. Based on
experimental data, we assume that the amplitudes and phases of pressure signals emitted from the
transducers are random variables that obey Gaussian distributions. The phase changes are, however,
not taken into consideration in our theory subject to their small effects on the field formation. Spatial
variation in pressure fields attributed to the random performance of transducers is large near the
source, and fades with propagation in the farfield. Linear theory predicts that the mean value of the
pressure amplitudes is the same as the value when the pressure on the array source is distributed
uniformly. Interestingly, the standard deviation around the mean pressure is independent of the radial
distance in the plane perpendicular to the beam axis, being inversely proportional to the square root of
the number of transducers. For the second-harmonic components, both the mean value and standard
deviation are dependent on the radial distance. The validity of these theoretical findings is verified by
Monte Carlo simulation and experimental data.
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1. INTRODUCTION

Ultrasonic fields formed by a finite aperture source

are generally complicated due to diffraction, especially in

the nearfield. Even so, we can, in principle, theoretically

predict such fields using the wave equation associated

with the appropriate boundary conditions. This approach is

extended to an arbitrary array source that usually consists

of many transducers. Generally, the electro-acoustic per-

formance of piezoelectric ultrasonic transducers, or, alter-

natively, their conversion efficiencies from electric to

acoustic power, differ individually even when the trans-

ducers are produced under controlled environments. Even

in such a situation, if the individual transducer is identified

with respect to its performance, sound fields from the array

source should be precisely predicted by wave theories

pertinent to our concern. However, measuring the individ-

ual performances of a large number of transducers is a

laborious task.

To date, the effects of variation in the design

parameters of an ultrasonic transducer, such as capacitance

and resonant frequency, on its performance characteristics

have been extensively investigated. For example, Kwun

et al. calculated the transducer performance based on

the transmission line model of Krimholtz, Leedom, and

Matthaei [1]. They showed that, in general, the resonant

frequency and four other major parameters of a piezo-

electric transducer have crucial effects on its performance.

Unfortunately, they do not mention the relationship

between variability in design parameters and the sound

fields formed by the transducer. Wooh and Shi elaborated

on the influence of the transducer’s dimensions in linear

phased arrays on beam steering behaviors for determining

optimal transducer design parameters [2]. Their design

objectives were to minimize the main-lobe width, to

squelch grating lobes, and to suppress the side-lobe

amplitudes. Later, the group of Wooh extended their

analysis to the oversized array transducers to eliminate

grating lobes as a direct consequence of the transducer

shape [3]. Interestingly, ultrasonic phased arrays consisting

of transducers larger than one wavelength have been

developed using the concept of sparse random placement
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of the transducers for tissue ablation applications in the

medical field [4,5].

Being different from the previous reports mentioned

above, the present research is motivated by a statistical

approach to characteristic evaluation of ultrasonic fields. In

particular, our interest is to obtain information about the

statistical relevance between transducer performance and

their respective sound fields in order to aid in the design of

an array source. Our curiosity is not limited to analysis in

linear fields, i.e., we also investigate the statistical rele-

vance in nonlinear fields. In fact, a sound beam of finite

amplitude distorts its waveform during propagation due to

the inherent nonlinearity of the medium. Since this non-

linear process produces harmonic distortion, the variation in

performance of transducers should affect the formation of

not only linear but nonlinear sound fields. In order to

evaluate the effects of these variations on field formation,

we consider the behaviors of statistic quantities such as

the mean value of sound pressure amplitudes, based on

experimental evidence indicating that the statistical quanti-

ties related to performance obey Gaussian distributions.

The remainder of the present study is devoted to

examination of the statistical relationship between the

transducer performance and pressure field in terms of

the mean value and standard deviation. First, theoretical

analysis is focused on linear fields. Next, this approach

is extended to the case of second-harmonic pressure fields

under weak nonlinearity. Finally, in order to verify the

validity of the theoretical findings, computer simulations

are executed using the Monte Carlo method. Moreover,

statistical estimators for field characteristics are compared

with previously reported experimental data [6].

2. STATISTICAL APPROACH

To begin with, let us assume a theoretical model of the

ultrasonic source whose aperture is planar and whose

typical dimension is much larger than the wavelength. We

also assume that ultrasonic waves radiated from the source

propagate along the z-axis or the beam axis in free space.

The coordinate variables in the plane perpendicular to the

z-axis are x and y in the radial direction.

Incidentally, an ultrasonic beam of finite amplitude

distorts its waveform during propagation. In this situation,

harmonics or combination frequency components other

than the original spectral components newly appear in

the distorted wave. In order to theoretically predict

such spectral components, we often use the Khokhlov-

Zabolotskaya-Kuznetsov (KZK) parabolic equation [7]:

r?2p�
2

c0

@2p

@z@t0
þ

b0

�0c0
4

@3p

@t03
¼ �

�

�0c0
4

@2p2

@t02
; ð1Þ

where r?2 is the two-dimensional Laplacian containing the

variables x and y, p is the sound pressure, c0 is the speed of

sound at small amplitude, t0 ¼ t � z=c0 is the retarded time,

b0 is a coefficient related to sound absorption, and � and �

are the nonlinearity coefficient and density of a medium,

respectively.

When nonlinearity is weak, Eq. (1) can be solved

analytically using the method of successive approximation.

Thus, the fundamental pressure p1 and second harmonic

pressure p2 satisfy the following equations, respectively:

r?2p1 �
2

c0

@2p1

@z@t0
¼ 0; ð2Þ

r?2p2 �
2
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@2p2

@z@t0
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�0c0
4

@2p2
1

@t02
: ð3Þ

The sound absorption term that corresponds to the third

term of the left-hand side of Eq. (1) is discarded here for

simplicity.

2.1. Fundamental Components

We assume that an ultrasonic source radiates mono-

chromatic waves of angular frequency !. By substituting

p1 ¼ Im½q1e
j!t0 � into Eq. (2), where the notation Im½c�

denotes the imaginary part of a complex number c, we

obtain the following equation for the complex pressure

q1:

r?2q1 � j2k
@q1

@z
¼ 0: ð4Þ

The solution of Eq. (4) is written as [8]

q1 ¼ j
k

2�z

Z 1
�1

Z 1
�1

q0ðx0; y0Þ

� exp �j
k

2

ðx� x0Þ2 þ ðy� y0Þ2

z

� �
dx0dy0; ð5Þ

where k ¼ !=c0 is the wavenumber, q0ðx0; y0Þ denotes the

pressure distribution function on the source face or

aperture, and the double integration is performed over the

face element dx0dy0.

Now, let us consider the case in which the source is

composed of a number of small transducers. When the area

of the source face is S and the number of transducers is N,

the area of the transducer aperture is given by S=N if the

transducers are of identical size and are allocated densely

over the face. Thus, Eq. (5) is approximated by replacing

the integral with summation:

q1 ¼ j
k

2�z

S

N

XN
n¼1

q0ðnÞ exp �j
k

2

ðx� xnÞ2 þ ðy� ynÞ2

z

� �
;

ð6Þ
where q0ðnÞ is the representative pressure amplitude

generated by only the nth transducer, although in reality

it will, to some extent, depend on any other surrounding

transducers through mutual acoustic coupling [9]. The

variables ðxn; ynÞ in Eq. (6) are the representative x and y
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coordinates, for example, the center position of the nth

transducer.

Even if transducers are produced under controlled

environments, their electro-acoustic conversion efficiencies

vary from transducer to transducer. Figure 1 shows the

measured pressure amplitudes and phases of sound waves

for 456 airborne piezoelectric ceramic transducers that

were commercially available. The transducers individually

driven at a frequency of 30 kHz and a voltage of 6 Vp{p

[10]. Moreover, all of the transducers have the same

aperture diameter of 1 cm. A 1/4-inch condenser micro-

phone is used to measure the sound pressure emitted from

the transducer. The distance between the transducer and the

microphone is 1 cm.

Both the pressure amplitudes and phases are apparently

scattered within limited ranges. In addition, the distribution

curves appear to be Gaussian functions. Based on the

assumption that they obey the Gaussian functions, the

mean value and standard deviation of the pressure

amplitudes were determined to be 27.6 Pa and 4.54 Pa,

respectively. Those of the phases were 0 and 0.1 radians,

where the phase data are shifted so that the mean value is 0.

Intrinsically, the amplitude and phase must be correlated

with each other. The correlation coefficient was measured

to be 0.63. The present report, however, does not consider

such correlation because the standard deviation of the

phases is not expected to significantly affect the field

formation. (Appendix A) Hereafter, we examine sound

pressure fields by neglecting the variance of the phases for

simple analysis.

Based on the above assumptions, we now consider a

statistical problem regarding the mean value of the sound

pressure q1. By taking the ensemble average of Eq. (6), we

obtain

hq1i ¼
jk

2�z

S

N

XN
n¼1

hq0ðnÞi exp �j
k

2

ðx� xnÞ2 þ ðy� ynÞ2

z

� �
;

ð7Þ
because q0ðnÞ becomes a random variable of the source

pressure amplitude. By setting the average hq0ðnÞi with the

mean pressure P0, we obtain

hq1i ¼
jk

2�z

SP0

N

XN
n¼1

exp �j
k

2

ðx� xnÞ2 þ ðy� ynÞ2

z

� �
: ð8Þ

Note that the mean pressure hq1i is the same as the pressure

when the source pressure amplitude is uniformly distribut-

ed over the aperture with P0.

Next, we consider the variance �2
1 of the pressure

amplitude, which is calculated as the expected value of the

squared deviation from the mean. Since the deviation is

given by �q1 ¼ q1 � hq1i, it follows for the variance that

�2
1 ¼ h�q1�q

�
1i

¼
kS

2�zN

� �2XN
n¼1

XN
m¼1

h�q0ðnÞ�q�0ðmÞi

� exp �j
k

2

ðx� xnÞ2 þ ðy� ynÞ2

z

� �

� exp j
k

2

ðx� xmÞ2 þ ðy� ymÞ2

z

� �
; ð9Þ

where �q0ðnÞ ¼ q0ðnÞ � P0, and � indicates the complex

conjugate. All transducers are assumed to have a common

covariance �2 and be statistically independent of each

other, i.e.,

h�q0ðnÞ�q�0ðmÞi ¼ �
2�nm; ð10Þ

where �nm is the Kronecker delta. Then, Eq. (9) is written

as

�2
1 ¼

kS

2�zN

� �2

�2N ¼
kS

2�z

� �2 �2

N
: ð11Þ

The standard deviation given by the square root of the

variance yields

Fig. 1 Variations of the received pressure amplitudes
(above) and phases (below) experimentally obtained
from 456 small piezoelectric ceramic transducers.
The input voltage applied to each transducer is 6 Vp{p

and the driving frequency is 30 kHz. The separation
distance between the transducer and a 1/4-inch
condenser microphone is 1 cm [10].
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�1 ¼
kS

2�z

�ffiffiffiffi
N
p : ð12Þ

In other words, the standard deviation �1 of the pressure

field in the linear field is directly proportional to that of the

transducer performance �. In addition, �1 decreases in

inverse proportion to z, the distance between the source and

receiving point, and the square root of the number of

transducers N. Accordingly, we expect the variation �1 to

decrease as N increases. This result is statistically the same

as a sample mean having a variance that is inversely

proportional to the number of samples when the samples

are uncorrelated [11]. Note also that �1 is dependent on

only the variable z and is independent of the variables x and

y. In contrast, if the transducers are highly correlated, the

relation h�q0ðnÞ�q�0ðmÞi ¼ N�2�nm is obtained [11]. In this

case, Eq. (12) takes a different form

�1 ¼
kS

2�z
�; ð13Þ

and is independent of N. Practically speaking, the trans-

ducers are somewhat correlated due to mutual coupling,

so that Eq. (12) may well be only a lower bound to the

expected deviation, for the same reason as the stochastic

process of uncorrelated random samples [11].

In the farfield, the magnitude of the pressure hq1i in

Eq. (8) can be approximated as

jhq1ij ’
kS

2�N

N

z
P0 ¼

kS

2�z
P0 ðon the beam axisÞ: ð14Þ

From Eqs. (12) and (14), the coefficient of variation (CV),

which is defined as the ratio of the standard deviation to the

mean value takes the following form in the farfield:

CV1 ¼
�1

jhq1ij
¼
�

P0

1ffiffiffiffi
N
p : ð15Þ

Thus, CV1 in the pressure field is directly related to the CV

of transducers �=P0. In the same fashion as the standard

deviation, CV1 is inversely proportional to the square root

of N. This means that even if CV is large, the field CV1

becomes small when the number of transducers is large.

2.2. Second-harmonic Components

Using the relationship between the second-harmonic

sound pressure p2 and its complex pressure q2, this is

p2 ¼ Im½q2e
j2!t0 �, and Eq. (3) is reformed as

r?2q2 � j4k
@q2

@z
¼ �j

2�k2

�0c
2
0

q2
1: ð16Þ

In order to derive the mean value of q2, we take the

ensemble average for both sides of Eq. (16):

r?2hq2i � j4k
@hq2i
@z
¼ �j

2�k2

�0c
2
0

hq2
1i: ð17Þ

Using Eq. (6) for the term hq2
1i, it follows that

hq2
1i ¼ j

kS

2�zN

� �2XN
n¼1

XN
m¼1

hq0ðnÞq0ðmÞi exp �j
k

2

ðx� xnÞ2 þ ðy� ynÞ2 þ ðx� xmÞ2 þ ðy� ymÞ2

z

� �
: ð18Þ

Since the source pressure q0ðnÞ is real, the relation hq0ðnÞq0ðmÞi ¼ P2
0 þ �2�nm holds. Roughly, hq0ðnÞq0ðmÞi ’ P2

0 because

of P2
0 � �2. Hence, the mean value of the second-harmonic component hq2i satisfies the following equation:

r?2hq2i � j4k
@hq2i
@z
¼ �j

2�k2

�0c
2
0

hq2
1i

’ �j
2�k2

�0c
2
0

hq1i2: ð19Þ

From this equation, we note that the mean of the second-harmonic agrees approximately with the value of when the source

is excited by a uniform distribution with P0 over the face.

Finally, let us focus on the variance of the second harmonic pressure. To this end, we write the deviation as

�q2 ¼ q2 � hq2i. Subtracting Eqs. (17) from Eq. (16) yields

r?2�q2 � j4k
@�q2

@z
¼ �j

2�k2

�0c
2
0

Q: ð20Þ

Here, by taking account of q0ðnÞ ¼ P0 þ�q0ðnÞ and P0 � j�q0ðnÞj, Q is given as

Q ¼ q2
1 � hq

2
1i ’ q2

1 � hq1i2

’ j
kS

2�zN

� �2XN
n¼1

XN
m¼1

½P0f�q0ðnÞ þ�q0ðmÞg� exp �j
k

2

ðx� xnÞ2 þ ðy� ynÞ2 þ ðx� xmÞ2 þ ðy� ymÞ2

z

� �

¼ j
kS

2�zN

� �2

P0

XN
n¼1

exp �j
k

2

ðx� xnÞ2 þ ðy� ynÞ2

z

� �XN
m¼1

2�q0ðmÞ exp �j
k

2

ðx� xmÞ2 þ ðy� ymÞ2

z

� �
: ð21Þ
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The summation term with respect to n denotes the sound

field subject to uniform pressure distribution with P0,

whereas the summation term with respect to m denotes the

variation in pressure q1 around its mean value hq1i. As

stated previously in the linear field evaluation, the variance

of the latter term in m is approximately independent of the

variables x and y. Since the source term Q of Eq. (20) is

formed by the product of the above two terms, it may be

expected that the range dependence of the standard

deviation �2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�q2�q�2i

p
along the x- and/or y-axis

does not change greatly compared with that of the mean

value of the fundamental component.

In the same way as the linear field case, we can obtain

the coefficient of variation CV2 for the second harmonic

component. From Eq. (21), the deviation �2 is proportional

to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hQQ�i
p

, then to P0 � 2�. In addition, the magnitude of

the mean hq2i is obtained by replacing 2�q0ðmÞ with P0 in

summation m. Thus, the average of the second harmonic

is related to P2
0 and the standard deviation is related to

P0 � 2�. CV2 is then expected to be as follows:

CV2 ¼
�2

jhq2ij
¼ 2

�

P0

1ffiffiffiffi
N
p : ð22Þ

The coefficient of variation for the second harmonic is

twice as large as that of the fundamental component.

3. NUMERICAL IMPLEMENTATION

In order to verify the effectiveness of the present

theoretical prediction, we perform numerical verification

using a computer simulation technique. The approach uses

the Monte Carlo method.

Figure 2 shows a theoretical model of an array sound

source, the aperture of which is a rectangle of length 2a in

the x direction and of length 2b in the y direction. The area

of the aperture is then 4ab, being divided into N equal

subareas. These subareas are numbered sequentially from

#1 to #N, as shown in Fig. 2. We assume that the array

source with pressure amplitude P0 ¼ 50 Pa (which corre-

sponds to approximately 125 dB in SPL) is radiating

30 kHz ultrasonic waves in air. Specifically, the aperture

dimensions are assigned as a ¼ 10 cm and b ¼ 8 cm.

Simulation is performed for two transducers of different

size: (i) 1 cm� 1 cm and (ii) 2 cm� 2 cm. Both trans-

ducers will exhibit almost omni-directional patterns be-

cause the dimensions are comparable with the wavelength

of 1.1 cm. For each arrangement, the number N takes a

value of 320 for (i) and 80 for (ii). The air temperature and

relative humidity of meteorological factors under normal

conditions are chosen as 20�C and 50%, respectively. Both

factors realistically influence sound absorption, although

not considered in the theory in the preceding section. The

absorption coefficients at 30, 60, and 90 kHz are predicted

to be 0.108, 0.228, and 0.338 Np/m, respectively [12].

The flowchart of computational procedure is shown in

Fig. 3. First, 80 and 320 pseudo-random numbers that obey

Gaussian distributions with a mean value of 27.6 and a

standard deviation of 4.54 are generated numerically as

input data [13]. The random numbers are then multiplied

by 1:81ð¼ 50=27:6Þ so that the mean pressure amplitude on

the source face P0 may become 50 Pa. Next, the numbers

thus obtained are sequentially allocated as the pressure

amplitudes of the individual transducers. Numerical analy-

sis to solve the KZK equation is based on the alternating

direction implicit (ADI) scheme used in finite difference

methods that are usually employed in three dimensional

wave propagation problems [7]. The first seven harmonics

are retained in the computation on the condition that the

initial step sizes in the x and y directions are both 2.5 mm

and the initial size in the z direction is 2.2 mm [14]. During

propagation, all of the step sizes are gradually increased

x

y

a−a

b

−b

O

...

...

...

...

Transducer #N

Transducer #1 #2

Fig. 2 Array source model for computer simulation.
The array consists of N small transducers, the apertures
of which are all equal to S=N, where S is the aperture
area of the array and is equal to 4ab.

Input of Mean Value P0 and
Standard Deviation σ

Generation of Pseudo−
Random Numbers

Assignment of On−Source
Pressure Amplitudes

( N= 80, 320 )

Numerical Calculation of
the KZK Equation

Iteration > M 
No

Printout of Results
Yes

Fig. 3 Flowchart of the simulation. The number of
trials, M, in calculation is 100.
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subject to the transformation rule of the coordinates [15]. A

similar computation is repeated 100 times while changing

the initial random numbers and retaining the same mean

and standard deviation.

Figure 4 shows the range-dependent curves of the first

three harmonic pressures along the x-axis at z ¼ 4 m, in

which (a) indicates the mean amplitudes and (b) indicates

the standard deviations. Numerical data along the y-axis

are not shown because their characteristic tendencies are

similar to those along the x-axis. In both figures, the solid

and dotted curves denote the data for N ¼ 320 and N ¼ 80,

respectively.

As Eq. (8) predicts, the pressure amplitudes are not

discernible even when the number of transducers is

changed from N ¼ 80 to 320, i.e., the solid and dotted

lines entirely overlap within the range of �80 cm. More-

over, the curves are symmetric with respect to the central

axis of x ¼ 0. On the other hand, remarkable differences

appear in the data for the standard deviations. For example,

the pressure amplitudes increase in inverse proportion toffiffiffiffi
N
p

, as Eq. (12) predicts, i.e., when N ¼ 80, sound pres-

sures are approximately twice, or 6 dB (¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
320=80
p

¼ 2),

greater in comparison with N ¼ 320. This tendency of 6-

dB difference can be observed for the three harmonics even

in the region away from the beam axis. Interestingly, the

standard deviations of the fundamental component are

almost independent of the coordinate variable x. However,

those of the higher harmonics are distinctly dependent on

x so as to decrease with the distance from the beam axis.

Incidentally, the �6 dB width of the second-harmonic

standard deviation is 30 cm when N ¼ 320, so that the

width is almost the same as that of the mean value of the

fundamental component, i.e., 28 cm. This result is expected

from the discussion in Sect. 2.2.

The coefficient of variation CV1 in the farfield for

the fundamental beam is predicted to be 4:54=ð27:6�ffiffiffiffiffiffiffiffi
320
p

Þ ¼ 9:2� 10�3 by Eq. (15) when N ¼ 320. Based on

the data presented in Fig. 4, the simulation indicates that

CV1 is approximately 9� 10�3 because the mean pressure

is 20 Pa and the standard deviation is 0.18 Pa, which is in

approximate agreement with the theoretical result. Simi-

larly, CV2 for the second harmonic takes a value of 0.018

from Eq. (22) and is approximately the same as the value

0.016 obtained from simulation in Fig. 4 (the mean

pressure of q2 is 6.0 Pa and the standard deviation is

0.093). It then follows that CV2 is approximately 6 dB

higher than CV1, as Eq. (22) predicts.

Propagation curves are shown in Fig. 5 for the mean

pressure amplitudes and standard deviations of the funda-

mental and second harmonic beams. The mean amplitudes

of the fundamental beam maintain an approximately

constant magnitude up to 1 m from the source and then
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28 cm
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(b)

Fig. 4 Range-dependent mean values (a) and standard
deviations (b) for the first three harmonics of sound
pressures along the x-axis at z ¼ 4 m. Solid curves
denote the data for N ¼ 320, and dotted curves denote
the data for N ¼ 80. The curves of the mean pressures
almost overlap for N ¼ 80 and 320.
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d 
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20 dB

Fig. 5 Mean pressure amplitudes and standard devia-
tions of the fundamental and second harmonic beams
along the z-axis when N ¼ 320. The dashed line
denotes the theoretical curve predicted from Eq. (12).
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decay gradually with the propagation distance. The decay

curve is roughly �6 dB/dd, primarily due to spherical

spreading. Similarly, the standard deviation decays in

parallel with the �6 dB/dd line predicted by Eq. (12).

In reality, the decay curve is corrected by multiplying

the amplitude attenuation factor e��1z, where �1 is the

absorption coefficient of the fundamental wave at 30 kHz

and is given by �1 ¼ 0:108 Np/m. We can then expect that

simulation asymptotically approaches the theoretical curve

in the farfield.

The level difference between the mean pressure and

standard deviation at 4 m is approximately 40 dB. How-

ever, the difference becomes small near the source. For

example, the difference is almost halved, being less than

20 dB within the range of 0.2 m. This means that the

variation in performance of individual transducers plays

a more significant role in the nearfield than in the farfield.

Although the same is observed for the second harmonic

curves, both the mean and standard deviation tend to

increase with propagation up to 1.5 m, which differs from

the pressure curves of the fundamental beam.

3.1. Comparison with Experiment

Kawashima et al. reported experimental data on CVs

for the fundamental and second harmonic pressure waves

using a square aperture array source with with 16 cm�
16 cm that is composed of 256 piezoelectric ceramic

transducers with a resonance frequency of 40 kHz and an

aperture diameter of 10 mm. The CV of the transducers was

set to be 30%. The experimental procedure and data acqui-

sition are described in detail in their technical report [6].

Figure 6 shows the experimental and simulation data

for the CVs of sound pressure. The data for two cases are

presented: (a) the data along the z-axis and (b) the data

along x-axis at z ¼ 1 m. Solid lines and symbols denote

simulated results and measurement data, respectively. In

(a), the CV curves take a peak at 45 cm for the fundamental

and at 60 cm for the second harmonic, respectively. These

peaks are expected to be located at the dips of the mean

values of sound pressure [14]. Actually, the last dips of the

fundamental component and second harmonic are theoret-

ically located at 0:16� R0 and 0:21� R0, respectively. In

these predictors, R0 is the Rayleigh length (¼ S=	 , where 	

is the wavelength) [14]. Since S ¼ 256 cm2 and 	 ¼ 8:6

mm, the peak of the fundamental component, for example,

should appear at 47 cm, which is almost equal to the data in

Fig. 6(a). In the region far from the peaks, the CV values

decrease gradually with distance, approaching the values

predicted by Eqs. (15) and (22), as indicated by the dotted

lines. In addition, CV increases with the radial distance, as

shown in Fig. 6(b). Roughly, the agreement between the

simulation and experimental results is good in the region

more than 80 cm from the array source and within 10 cm

of the z-axis. Except for these regions, however, relatively

significant discrepancies appear. A possible source for the

discrepancies is the neglecting of the phase variation of the

transducers. The aperture of the transducer is a square in

the simulation, but is circular in the experiment. This might

be another source of the discrepancies.

4. CONCLUSIONS

In general, piezoelectric ultrasonic transducers have

more or less variation in their performances or conversion

efficiencies in a random manner. Under such assumption,

we considered the effect of the variation on sound field

formation from a statistical point when an array source

consisting of a number of transducers with such variations

radiates monochromatic waves of finite amplitude. The

theory predicts that random variation in pressure amplitude

decreases with the increase in the number of transducers N.

More strictly, the standard deviation of pressure amplitude

is inversely proportional to
ffiffiffiffi
N
p

. One of the interesting

findings is that the pressure variation decreases as the
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Fig. 6 Coefficients of variation of the fundamental and
second harmonic components (a) along the z-axis
and (b) along the x-axis at z ¼ 1 m. The CV of the
ultrasonic transducers is 30%. The solid lines denote
the simulated curves, and the symbols denote the
measurement data. The dotted lines in (a) are predicted
from Eqs. (15) and (22).
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pressure receiver is moved away from the array source.

These findings are effective for both the fundamental and

second harmonic components. However, a significant

difference appears in the beam pattern curves of the

standard deviation. In a linear field, the pattern is

approximately independent of the radial coordinate.

Whereas, the pattern is obviously dependent on the

coordinates, being almost the same pattern of the mean

value of the fundamental component. The validity of the

present findings was verified through a Monte Carlo

computer simulation and/or experiments conducted in air.
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APPENDIX A: PROBABILITY DENSITY
FUNCTION OF PHASE

Ultrasonic waves emitted from the source are com-

posed of a collection of harmonically related sinusoidal

signals that are generally given by sð
Þ ¼ P0 sin 
, where 


is the phase. In order to know how the only phase affects

field formation, we assume the amplitude P0 to be constant,

whereas the phase 
 is assumed to be a random variable

that obeys a Gaussian distribution of the form

pð
Þ ¼
1ffiffiffiffiffiffi
2�
p

�

e�


2=2�2

 ; ðA-1)

where the notation p is not the sound pressure, but rather

the probability density function with small standard

deviation �
. Thus, the sinusoidal function sð
Þ can be

viewed as a stochastic process and its probability function

pðsÞ is obtained as

pðsÞ ¼ pð
Þ
1

ds=d

¼ pð
Þ

1

P0 cos 


¼
1ffiffiffiffiffiffi
2�
p

�


1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

0 � s2
p e�fsin

�1ðs=P0Þg2=2�2

 :

ðA-2)

Actually, �
 in Eq. (A-1) is evaluated as small as 0.1

radians, according to the measured data in Fig. 1. Hence,

Eq. (A-2) can be approximated as

pðsÞ ’
1ffiffiffiffiffiffi

2�
p

�
P0

e�s
2=2�2


P
2
0 : ðA-3)

Note that the random change in phase affects the formation

of the pressure field as �
P0, corresponding to the effect

due to the random change of the amplitude only, namely,

�P0
. Since �
P0 ¼ 0:1� 27:6 ¼ 2:76 Pa and �P0

¼ 4:54 Pa

from Fig. 1, it can be predicted that in the numerical

examples of Figs. 4 and 5 the amplitude effects are 1.6

times greater than the phase effects.
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